Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Methods ; 20(1): 62, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704591

RESUMEN

BACKGROUND: High-quality RNA extraction from woody plants is difficult because of the presence of polysaccharides and polyphenolics that bind or co-precipitate with the RNA. The CTAB (cetyl trimethylammonium bromide) based method is widely used for the isolation of nucleic acids from polysaccharide-rich plants. Despite the widespread use of the CTAB method, it is necessary to adapt it to particular plant species, tissues and organs. Here we described a simple and generalized method for RNA isolation from mature leaf tissues of several economically important woody (17) and herbaceous plants (2) rich in secondary metabolites. High yields were achieved from small amount (up to 50 mg) of plant material. Two main modifications were applied to the basic protocol: an increase in ß-mercaptoethanol concentration (to 10%v/v) and the use of an effective DNase treatment. As opposed to similar studies, we tried to describe a more detailed protocol for isolating RNA, including the exact quantity and concentration of the reagents were used. RESULTS: Our modified CTAB method is proved to be efficient in extracting the total RNA from a broad range of woody and herbaceous species. The RNA yield was ranged from 2.37 to 91.33 µg/µl. The A260:A280 and A260:A230 absorbance ratios were measured from 1.77 to 2.13 and from 1.81 to 2.22. The RIN value (RNA Integrity Number) of the samples fell between 7.1 and 8.1, which indicated that a small degree of RNA degradation occurred during extraction. The presence of a single peak in the melt curve analyses and low standard errors of the Ct values of replicated measurements indicated the specificity of the primers to bind to the cDNA. CONCLUSIONS: Our RNA isolation method, with fine-tuned and detailed instructions, can produce high quality RNA from a small amount of starting plant material that is suitable for use in downstream transcriptional analyses. The use of an increased concentration of the reducing agent ß-mercaptoethanol in the extraction buffer, as well as the application of DNaseI-treatment resulted in a method suitable for a wide range of plants without the need of further optimalization, especially in Rhus typhina (Staghorn sumac), for which molecular-genetic studies have not yet been sufficiently explored.

2.
Sci Rep ; 13(1): 19298, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935846

RESUMEN

Alternaria, a cosmopolitan fungal genus is a dominant member of the grapevine (Vitis vinifera) microbiome. Several Alternaria species are known to produce a variety of secondary metabolites, which are particularly relevant to plant protection and food safety in field crops. According to previous findings, the majority of Alternaria species inhabiting grapevine belong to Alternaria sect. Alternaria. However, the phylogenetic diversity and secondary metabolite production of the distinct Alternaria species has remained unclear. In this study, our aim was to examine the genetic and metabolic diversity of endophytic Alternaria isolates associated with the above-ground tissues of the grapevine. Altogether, 270 Alternaria isolates were collected from asymptomatic leaves and grape clusters of different grapevine varieties in the Eger wine region of Hungary. After analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) and RNA polymerase second largest subunit (rpb2) sequences, 170 isolates were chosen for further analyses. Sequences of the Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG), OPA10-2, and KOG1058 were also included in the phylogenetic analyses. Identification of secondary metabolites and metabolite profiling of the isolates were performed using high-performance liquid chromatography (HPLC)-high-resolution tandem mass spectrometry (HR-MS/MS). The multilocus phylogeny results revealed two distinct groups in grapevine, namely A. alternata and the A. arborescens species complex (AASC). Eight main metabolites were identified in all collected Alternaria isolates, regardless of their affiliation to the species and lineages. Multivariate analyses of untargeted metabolites found no clear separations; however, a partial least squares-discriminant analysis model was able to successfully discriminate between the metabolic datasets from isolates belonging to the AASC and A. alternata. By conducting univariate analysis based on the discriminant ability of the metabolites, we also identified several features exhibiting large and significant variation between A. alternata and the AASC. The separation of these groups may suggest functional differences, which may also play a role in the functioning of the plant microbiome.


Asunto(s)
Vitis , Vino , Alternaria/metabolismo , Filogenia , Vitis/microbiología , Espectrometría de Masas en Tándem
3.
PLoS One ; 17(9): e0273985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36067200

RESUMEN

The present study aimed to examine the capability of Clonostachys rosea isolates as a biological control agent against grapevine trunk diseases pathogens. Five C. rosea and 174 pathogenic fungal strains were isolated from grafted grapevines and subjected to in vitro confrontation tests. Efficient antagonism was observed against Eutypa lata and Phaeomoniella chlamydospora while mycoparasitism was observed to the pathogens of Botryosphaeria dothidea and Diaporthe spp. pathogens in in vitro dual culture assays. The conidia production of the C. rosea isolates were also measured on PDA plates. One isolate (19B/1) with high antagonistic capabilities and efficient conidia production was selected for in planta confrontation tests by mixing its conidia with the soil of Cabernet sauvignon grapevine cuttings artificially infected with B. dothidea, E. lata and P. chlamydospora. The length and/or the incidence of necrotic lesions caused by E. lata and P. chlamydospora at the inoculation point were significantly decreased after a three months incubation in the greenhouse on cuttings planted in soils inoculated with the conidia of strain 19B/1, while symptom incidence and severity were unaffected in the case of the pathogen B. dothidea. Based on the above results, we consider C. rosea a promising biological control agent against some grapevine trunk diseases.


Asunto(s)
Agentes de Control Biológico , Hypocreales , Agentes de Control Biológico/farmacología , Hypocreales/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Esporas Fúngicas
4.
J Fungi (Basel) ; 8(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35448609

RESUMEN

Botrytis cinerea, can lead to the formation of noble rot (NR) of grape berries under certain environmental conditions, resulting in favored metabolic and physical changes necessary for producing highly regarded botrytized wines. The functional genes involved in the textural and biochemical processes are still poorly characterized. We generated and analyzed metatranscriptomic data from healthy (H) berries and from berries representing the four stages of NR from the Tokaj wine region in Hungary over three months. A weighted gene co-expression network analysis (WGCNA) was conducted to link B. cinerea functional genes to grape berry physical parameters berry hardness (BH), berry skin break force (F_sk), berry skin elasticity (E_sk), and the skin break energy (W_sk). Clustered modules showed that genes involved in carbohydrate and protein metabolism were significantly enriched in NR, highlighting their importance in the grape berry structural integrity. Carbohydrate active enzymes were particularly up-regulated at the onset of NR (during the transition from phase I to II) suggesting that the major structural changes occur early in the NR process. In addition, we identified genes expressed throughout the NR process belonging to enriched pathways that allow B. cinerea to dominate and proliferate during this state, including sulphate metabolizing genes and genes involved in the synthesis of antimicrobials.

5.
Plants (Basel) ; 11(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406844

RESUMEN

Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.

6.
Phytopathology ; 112(5): 1029-1035, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34752137

RESUMEN

Grapevine trunk diseases (GTDs) are a major threat to the wine industry, causing yield loss and dieback of grapevines. While the increasing damage caused by GTDs in recent decades have spurred several studies on grapevine-associated pathogenic fungi, key questions about the emergence and severity of GTDs remain unanswered, including possible differences in plant pathogenic fungal communities in asymptomatic and symptomatic grapevines. We generated fungal DNA metabarcoding data from soil, bark, and perennial wood samples from asymptomatic and symptomatic grapevines sampled in three terroirs. We observed larger compositional differences in plant pathogenic fungi among different plants parts within grapevine plants than among individual grapevines. This is driven by the dominance of GTD-associated fungi in perennial wood and non-GTD pathogens in soil, as well as by the lack of significant differences among asymptomatic and Esca symptomatic grapevines. These results suggest that fungi generally associated with Esca disease belong to the core grapevine microbiome and likely are commensal endophytes and/or latent saprotrophs, some of which can act as opportunistic pathogens on stressed plants. In addition, we found significant compositional differences among sampling sites, particularly in soil, which suggest a certain influence of local edaphic and mesoclimatic factors on plant pathogenic fungal communities. Furthermore, the observed differences among terroirs in plant pathogenic fungal communities in grapevine woody parts indicate that environmental factors likely are important for the development of Esca disease and further studies are needed to investigate the abiotic conditions on fungal compositional dynamics in Esca-affected plants.


Asunto(s)
Micobioma , Vitis , Endófitos , Hongos/genética , Enfermedades de las Plantas/microbiología , Suelo , Vitis/microbiología
7.
PLoS One ; 16(10): e0258043, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653213

RESUMEN

Fungal diseases in agronomically important plants such as grapevines result in significantly reduced production, pecuniary losses, and increased use of environmentally damaging chemicals. Beside the well-known diseases, there is an increased interest in wood-colonizing fungal pathogens that infect the woody tissues of grapevines. In 2015, a traditional isolation method was performed on grapevine trunks showing symptoms of trunk diseases in Hungary. One isolate (T15142) was identified as Kalmusia longispora (formerly Dendrothyrium longisporum) according to morphological and phylogenetic analyses. To evaluate the pathogenicity of this fungus on grapevines, artificial infections were carried out under greenhouse and field conditions, including the CBS 824.84 and ex-type CBS 582.83 strains. All isolates could be re-isolated from inoculated plants; however, varying virulence was observed among them in terms of the vascular necrosis caused. The incidence and severity of this symptom seemed to be congruent with the laccase-producing capabilities of the isolates. This is the first report on the ability of Kalmusia longispora to cause symptoms on grapevines, and on its possible dependence on laccase secretion.


Asunto(s)
Ascomicetos , Lacasa/metabolismo , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Ascomicetos/aislamiento & purificación , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Virulencia
8.
Environ Microbiol Rep ; 13(4): 509-520, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33951321

RESUMEN

Grapevine (Vitis vinifera) is a reservoir of fungal endophytes that may affect its growth, health status and grape production. Although there is growing interest in comparing fungal communities of mainly red grape varieties across various factors using only high-throughput sequencing, the small-scale mycobiome variations in geographically close vineyards need further examination. We aimed to characterize the fungal microbiome of the above-ground tissues of V. vinifera cv. Furmint in different plant parts, seasons and sites using culture-dependent and culture-independent methods, and in planta fluorescent microscopic visualization techniques. Samples were collected from four sites of the Tokaj wine region in Mád and two reference sites in Eger, Hungary, across different seasons for 2 years. Fungal endophytes of young and mature leaves, flowers and grape bunches were collected at different phenological stages. Based on each technique, Aureobasidium pullulans, Cladosporium spp. and the complex species Alternaria alternata dominated the community at every site, season and plant organ. We found no significant difference among communities in distinct neighbouring vineyards, nor when compared with the distant reference sites. We can conclude that the different shoot parts of the Furmint grapevines harbour a common core group of fungal community in these regions.


Asunto(s)
Micobioma , Vitis , Vino , Hojas de la Planta , Estaciones del Año , Vitis/microbiología , Vino/microbiología
9.
Plants (Basel) ; 9(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371257

RESUMEN

Botrytis cinerea is a well-known pathogen of grapevine. However, under certain microclimatic conditions, Botrytis infection results in noble rot, an essential process in the production of the world-known Tokaji aszú wines in Hungary. We investigated the physico-chemical characteristics and culturable microorganisms associated with grape berries through several noble rot phases in the two main cultivars grown in Tokaj: Vitisvinifera cv. "Furmint" and "Hárslevelu". We measured physical and analytical parameters routinely tested in viticulture and analyzed the ITS rDNA sequence data of fungi isolated from the sampled berries. We observed significant differences in the physico-chemical parameters among the noble rot phases as well as sampling dates. The greatest variation in berry texture and microbial structure was observed in the initial phases, with variables converging as the noble rot progressed. By finding a bijection between the examined chemical properties and the factorial parameters (e.g., noble rot phase, collection time, cultivar), an appropriate sweet winemaking material can be designed. Fungal community differed significantly among cultivars, with higher number of species observed in Hárslevelu. Our results reveal that there is more to noble rot than only Botrytiscinerea and other microorganisms may play important roles in the aszú process.

10.
Plants (Basel) ; 9(9)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906683

RESUMEN

Erysiphe necator populations, causing powdery mildew of grapes, have a complex genetic structure. Two genotypes, A and B, were identified in most vineyards across the world on the basis of fixed single nucleotide polymorphisms (SNPs) in several DNA regions. It was hypothesized that A populations overwinter as mycelia in grapevine buds, giving rise to so-called flag shoots in spring, and are more sensitive to fungicides than B populations, which overwinter as ascospores and become widespread later in the season. Other studies concluded that the biological significance of these genotypes is unclear. In the spring of 2015, there was a unique opportunity to collect E. necator samples from flag shoots in Hungary. The same grapevines were sampled in summer and autumn as well. A total of 182 samples were genotyped on the basis of ß-tubulin (TUB2), nuclear ribosomal DNA (nrDNA) intergenic spacer (IGS), and internal transcribed spacer (ITS) sequences. Genotypes of 56 samples collected in 2009-2011 were used for comparison. Genotype A was not detected at all in spring, and was present in only 19 samples in total, mixed with genotype B, and sometimes with another frequently found genotype, designated as B2. These results did not support the hypothesis about temporal isolation of the two genotypes and indicated that these are randomly distributed in vineyards.

11.
Front Microbiol ; 11: 1571, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765452

RESUMEN

In contrast to Eurasia and North America, powdery mildews (Ascomycota, Erysiphales) are understudied in Australia. There are over 900 species known globally, with fewer than currently 60 recorded from Australia. Some of the Australian records are doubtful as the identifications were presumptive, being based on host plant-pathogen lists from overseas. The goal of this study was to provide the first comprehensive catalog of all powdery mildew species present in Australia. The project resulted in (i) an up-to-date list of all the taxa that have been identified in Australia based on published DNA barcode sequences prior to this study; (ii) the precise identification of 117 specimens freshly collected from across the country; and (iii) the precise identification of 30 herbarium specimens collected between 1975 and 2013. This study confirmed 42 species representing 10 genera, including two genera and 13 species recorded for the first time in Australia. In Eurasia and North America, the number of powdery mildew species is much higher. Phylogenetic analyses of powdery mildews collected from Acalypha spp. resulted in the transfer of Erysiphe acalyphae to Salmonomyces, a resurrected genus. Salmonomyces acalyphae comb. nov. represents a newly discovered lineage of the Erysiphales. Another taxonomic change is the transfer of Oidium ixodiae to Golovinomyces. Powdery mildew infections have been confirmed on 13 native Australian plant species in the genera Acacia, Acalypha, Cephalotus, Convolvulus, Eucalyptus, Hardenbergia, Ixodia, Jagera, Senecio, and Trema. Most of the causal agents were polyphagous species that infect many other host plants both overseas and in Australia. All powdery mildews infecting native plants in Australia were phylogenetically closely related to species known overseas. The data indicate that Australia is a continent without native powdery mildews, and most, if not all, species have been introduced since the European colonization of the continent.

12.
Microbiol Res ; 168(6): 379-388, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23353014

RESUMEN

The necrotrophic fungus Botrytis cinerea is reported to infect more than 220 host plants worldwide. In phylogenetical-taxonomical terms, the pathogen is considered a complex of two cryptic species, group I and group II. We sampled populations of B. cinerea on sympatric strawberry and raspberry cultivars in the North-East of Hungary for three years during flowering and the harvest period. Four hundred and ninety group II B. cinerea isolates were analyzed for the current study. Three different data sets were generated: (i) PCR-RFLP patterns of the ADP-ATP translocase and nitrate reductase genes, (ii) MSB1 minisatellite sequence data, and (iii) the fragment sizes of five microsatellite loci. The structures of the different populations were similar as indicated by Nei's gene diversity and haplotype diversity. The F statistics (Fst, Gst), and the gene flow indicated ongoing differentiation within sympatric populations. The population genetic parameters were influenced by polymorphisms within the three data sets as assessed using Bayesian algorithms. Data Mining analysis pointed towards the five microsatellite loci as the most defining markers to study differentiation in the 490 isolates. The results suggest the occurrence of host-specific, sympatric divergence of generalist phytoparasites in perennial hosts.


Asunto(s)
Botrytis/aislamiento & purificación , Fragaria/microbiología , Enfermedades de las Plantas/microbiología , Rosaceae/microbiología , Botrytis/clasificación , Botrytis/genética , Botrytis/fisiología , ADN de Hongos/genética , Variación Genética , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción
13.
Phytopathology ; 102(7): 707-16, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22512466

RESUMEN

Pycnidial fungi belonging to the genus Ampelomyces are common intracellular mycoparasites of powdery mildews worldwide. Some strains have already been developed as commercial biocontrol agents (BCAs) of Erysiphe necator and other powdery mildew species infecting important crops. One of the basic, and still debated, questions concerning the tritrophic relationships between host plants, powdery mildew fungi, and Ampelomyces mycoparasites is whether Ampelomyces strains isolated from certain species of the Erysiphales are narrowly specialized to their original mycohosts or are generalist mycoparasites of many powdery mildew fungi. This is also important for the use of Ampelomyces strains as BCAs. To understand this relationship, the nuclear ribosomal DNA internal transcribed spacer (ITS) and partial actin gene (act1) sequences of 55 Ampelomyces strains from E. necator were analyzed together with those of 47 strains isolated from other powdery mildew species. These phylogenetic analyses distinguished five major clades and strains from E. necator that were present in all but one clade. This work was supplemented with the selection of nine inter-simple sequence repeat (ISSR) markers for strain-specific identification of Ampelomyces mycoparasites to monitor the environmental fate of strains applied as BCAs. The genetic distances among strains calculated based on ISSR patterns have also highlighted the genetic diversity of Ampelomyces mycoparasites naturally occurring in grapevine powdery mildew. Overall, this work showed that Ampelomyces strains isolated from E. necator are genetically diverse and there is no indication of strict mycohost associations in these strains. However, these results cannot rule out a certain degree of quantitative association between at least some of the Ampelomyces lineages identified in this work and their original mycohosts.


Asunto(s)
Ascomicetos/fisiología , Especificidad del Huésped , Hongos Mitospóricos/fisiología , ADN Intergénico , Genes Fúngicos , Marcadores Genéticos , Variación Genética , Hongos Mitospóricos/genética , Enfermedades de las Plantas , Vitis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...